Cancer Association of South Africa (CANSA)

CANSFA Fact Sheet on Cervical Cancer

Introduction
The cervix is the lower, narrow end of the uterus (the hollow, pear-shaped organ where a foetus can grow). The cervix leads from the uterus to the vagina (birth canal) below. The cervix is sometimes referred to as the uterine cervix. The part of the cervix closest to the body of the uterus is called the endocervix. The part next to the vagina is the exocervix.

Worldwide, cervical cancer counts among the top five (5) female cancers in the world (Globocan statistics 2018). It is much less common in developed countries like the United States of America because of the routine use of Pap smears by most women.

The top five (5) female cancers, worldwide, are:

- Breast Cancer
- Colorectal Cancer
- Lung Cancer
- Cervical Cancer
- Thyroid Cancer.

Cervical cancer tends to appear during midlife. Over half of the women diagnosed are between the ages of 35 and 55. It rarely occurs in women under 20 and only 20% of the infected women are over 65 years of age (CervicalCancer.org).

Cervical Cancer
Cervical cancer is a malignant neoplasm arising from cells originating in the cervix. Cervical cancer is a disease in which cells in the cervix become malignant (cancerous). The two main types of cells...
covering the cervix are squamous cells (on the exocervix) and glandular cells (on the endocervix). The place where these two cell types meet is called the transformation zone. Most cancers start in the transformation zone of the cervix.

Cervical cancer is usually a slow-growing cancer that may not have immediate symptoms but can be found with regular Pap smear tests (a procedure in which cells are scraped from the cervix and looked at under a microscope). Cervical cancer is almost always caused by Human Papillomavirus (HPV) infection.

Cervical cancer starts as a pre-cancerous condition called dysplasia. This pre-cancerous condition can be detected by a Pap smear and is 100% treatable. That is why it is so important for women to get regular Pap smears done. Most women who are diagnosed with cervical cancer today have not had regular Pap smears or they have not followed up on abnormal Pap smear results.

Undetected pre-cancerous changes can develop into cervical cancer. From there is can spread to the bladder, intestines, lungs, and liver. It can take several years for pre-cancerous changes to turn into cervical cancer. Patients usually start experiencing problems when the cancer is already advanced and has spread.

“Cervical cancer is the fourth most frequent cancer in women worldwide, representing nearly 8% of all female cancer deaths every year. The majority of cases of cervical cancer are caused by human papillomavirus (HPV); however, up to 5% of tumors are not associated with HPV-persistent infection and, moreover, the new WHO Female Genital Tumors classification subdivided cervical squamous and adenocarcinomas into HPV-associated and HPV-independent tumors. Based on this new information, the aim of this review is to provide an overview of HPV-independent cervical cancer, evaluating diagnostic techniques, molecular profiles, and clinical outcomes. The HPV-independent tumors are characterized by a differentiated molecular profile with lower proliferative activity, a p53 immunostaining, a decreased expression of cyclin-dependent kinase inhibitor proteins, such as p16, p14, and p27, and alterations in PTEN, p53, KRAS, CTNNB1, ARID1A, and ARID5B HPV-independent tumors are associated with both adenocarcinomas and squamous histologic subtypes, with lymph node involvement in the early stages, more distant metastasis, and generally worse oncological outcomes. Thus far, no specific therapeutic strategies have been developed based on HPV status; however, with advancing knowledge of differences in the molecular profiles and possible targetable alterations, novel approaches may offer potential options in the near future. Investigators should report on clinical outcomes, evaluating the overall response rates to specific treatments, and consider new biomarkers to establish more accurate prognostics factors.”

Tumour Grade and Tumour Stage
Tumour grade and stage are terms used to describe the severity of a tumour, while tumour grade describes the appearance of cancerous cells in the tissue by examining them under a microscope.
Tumour stage encompasses:

- The location of the tumour.
- The size and/or extent of the original tumour.
- Whether cancer cells have spread to lymph nodes or anywhere else in the body.
- The number of tumours present.

Doctors use tumour grade, cancer stage, and a patient’s age and general health to decide the course of treatment for the patient and determine prognosis. Prognosis describes all factors including the disease course, cure rate, chances of survival, and risk of recurrence of cancer.

What are the cancer stages?

Different systems of cancer staging are used to describe the types of cancer. Below is a common method in which stages are ranged from 0 to IV.

- **Stage 0:** The tumour is confined to its place of origin (in situ) and has not spread to nearby tissue.
- **Stage I:** The tumour is located only in the original organ, is small, and has not spread.
- **Stage II:** The size of the tumour is large but has not spread.
- **Stage III:** The tumour has become larger and may have spread to surrounding tissues and/or lymph nodes.
- **Stage IV:** The tumour has spread to other distant organs of the body, which is known as the metastasis stage.

TNM staging

Another common staging method used for cancer is the TNM system, which stands for tumour, node (which means spread of the tumour to lymph nodes), and metastasis. When a patient’s cancer is staged using the TNM system, a number will be present along with the letter. This number signifies the extent of the disease in each category - tumour, node, and metastases.

Another system of cancer staging divides cancer into five stages, which include:

- **In situ:** Abnormal cells are present but have not spread to nearby tissue.
- **Localized:** Cancer is located only in the original organ and shows no sign of its spread.
- **Regional:** Cancer has spread to nearby lymph nodes, tissues, or organs.
- **Distant:** Cancer has spread to distant parts of the body.
- **Unknown:** The stage cannot be figured out due to a lack of enough information.

What are the cancer grades?

Cancer grades are based on examination of the suspected tissue sample under a microscope. This involves surgically removing a piece of the suspected cancerous tissue and sending it to the lab for analysis. The entire procedure is known as a biopsy.

A doctor who specializes in diagnostic tests (pathologist) examines the cells of the tissue and determines whether they are harmless (benign or noncancerous) or harmful (malignant or cancerous). They describe the microscopic appearance of the cells and assign a numerical “grade” to most cancers.
Generally, a lower grade indicates slow-growing cancer and a higher grade indicates fast-growing cancer.

The most commonly used grading system is as follows:

- Grade I: Cancer cells that look like normal cells but are not growing rapidly.
- Grade II: Cancer cells that don’t look like normal cells with their growth being faster than normal cells.
- Grade III: Cancer cells that look abnormal and have the potential to grow rapidly or spread more aggressively.

Sometimes, the following system can be used:

- GX: Grade cannot be assessed (undetermined grade)
- G1: Well-differentiated (low grade)
- G2: Moderately differentiated (intermediate grade)
- G3: Poorly differentiated (high grade)
- G4: Undifferentiated (high grade)

Incidence of Cervical Cancer in South Africa

According to the outdated National Cancer Registry (2019), known for the under reporting of cancer statistics, the following number of cervical cancer cases was histologically diagnosed in South Africa during 2019:

<table>
<thead>
<tr>
<th>Group - Females</th>
<th>Actual No of Cases</th>
<th>Estimated Lifetime Risk</th>
<th>Percentage of All Cancers</th>
</tr>
</thead>
<tbody>
<tr>
<td>All females</td>
<td>6945</td>
<td>1:42</td>
<td>15.85%</td>
</tr>
<tr>
<td>Asian females</td>
<td>83</td>
<td>1:118</td>
<td>6.02%</td>
</tr>
<tr>
<td>Black females</td>
<td>5932</td>
<td>1:36</td>
<td>30.47%</td>
</tr>
<tr>
<td>Coloured females</td>
<td>397</td>
<td>1:73</td>
<td>8.22%</td>
</tr>
<tr>
<td>White females</td>
<td>533</td>
<td>1:64</td>
<td>2.99%</td>
</tr>
</tbody>
</table>

The frequency of histologically diagnosed cases of cervical cancer in South Africa for 2019 was as follows (National Cancer Registry, 2019):

<table>
<thead>
<tr>
<th>Group - Females</th>
<th>0 – 19 Years</th>
<th>20 – 29 Years</th>
<th>30 – 39 Years</th>
<th>40 – 49 Years</th>
<th>50 – 59 Years</th>
<th>60 – 69 Years</th>
<th>70 – 79 Years</th>
<th>80+ Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>All females</td>
<td>2</td>
<td>121</td>
<td>1,245</td>
<td>2,059</td>
<td>1,684</td>
<td>1,169</td>
<td>495</td>
<td>206</td>
</tr>
<tr>
<td>Asian females</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>21</td>
<td>19</td>
<td>14</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Black females</td>
<td>2</td>
<td>90</td>
<td>1,068</td>
<td>1,765</td>
<td>1,385</td>
<td>1,013</td>
<td>430</td>
<td>179</td>
</tr>
<tr>
<td>Coloured females</td>
<td>0</td>
<td>13</td>
<td>61</td>
<td>112</td>
<td>115</td>
<td>64</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>White females</td>
<td>0</td>
<td>15</td>
<td>100</td>
<td>161</td>
<td>129</td>
<td>78</td>
<td>36</td>
<td>14</td>
</tr>
</tbody>
</table>

N.B. In the event that the totals in any of the above tables do not tally, this may be the result of uncertainties as to the age, race or sex of the individual. The totals for ‘all males’ and ‘all females’, however, always reflect the correct totals.
Causes of Cervical Cancer
Almost all cervical cancers are caused by the Human Papilloma Virus (HPV). HPV is a common virus that is spread through skin-to-skin contact, body fluids and sexual intercourse. There are many different types of HPV. Some strains lead to cervical cancer. Other strains may cause genital warts, while others do not cause any problems at all.

Human Papillomavirus (HPV) is the most common sexually transmitted infection in the world. More than 100 HPV types have been identified, over 40 of which can infect the genital area. HPV types are classified by their association with cancer:

Non-oncogenic (low-risk HPV) – such as HPV 6 and HPV 11
It can cause:
- Benign or low-grade abnormalities of cervical cells
- Anogenital warts
- Recurrent Respiratory Papillomatosis – a disease of the respiratory tract

Ongonenic (high-risk HPV) – such as HPV 16 and HPV 18
It can cause:
- Intraepithelial neoplasia of the anogenital region
- Cervical cancer
- Vulva cancer
- Vaginal cancer
- Penile cancer
- Anal cancer
- Oropharyngeal cancers

Cervical cancer counts among the top five (5) cancers in women worldwide, with about 500 000 new cases and 250 000 deaths each year, according to the World Health Organization (WHO). Virtually all cases are linked to genital infection with HPV, the most common viral infection of the reproductive tract.

The top five (5) cancers are (Globocan 2018 statistics):
- Breast Cancer
- Colorectal Cancer
- Lung Cancer
- Cervical Cancer
- Thyroid Cancer

High and Low Risk Human Papilloma Viruses
Most people infected with HPV never develop any symptoms, however, there are a number of conditions that can result from an HPV infection.

HPV Research Scientists have separated HPV types into those that are more likely to develop into cancer and those that are less likely. The so-called ‘high-risk’ types are more likely to lead to the development of cancer, while ‘low-risk’ viruses rarely develop into cancer.
The sexually transmitted varieties of ‘high-risk’ HPV types include:
HPV-16 HPV-18 HPV-31 HPV-33 HPV-35 HPV-39
HPV-45 HPV-51 HPV-52 HPV-56 HPV-58 HPV-59
HPV-68 HPV-69

A few other HPV types are also sometimes included on this list. These ‘high-risk’ HPV types cause
growths that are usually flat and nearly invisible as compared to the warts caused by types HPV-6
and HPV-11. Up to 70% of cervical cancer cases are caused by HPV-16 and HPV-18.

‘Low-risk’ HPV types can cause no symptoms or may cause conditions such as genital warts, but do
not cause cervical cancer. Warts can form weeks, months, or even years after sexual contact with a
person who has genital HPV. It is also possible that warts may never appear. In fact, most people
with ‘low-risk’ HIV types never know they are infected because they do not get warts or any other
symptoms.

The following table lists various conditions along with their associated types of HPV:

<table>
<thead>
<tr>
<th>Disease</th>
<th>HPV Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical cancer</td>
<td>16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58</td>
</tr>
<tr>
<td>Precancerous changes</td>
<td>16, 18, 34, 39, 42, 55</td>
</tr>
<tr>
<td>Laryngeal papillomas</td>
<td>6, 11, 30</td>
</tr>
<tr>
<td>Genital Warts</td>
<td>6, 11, 30, 40, 41, 42, 43, 44, 45, 51, 54</td>
</tr>
<tr>
<td>Common warts</td>
<td>1, 2, 4, 26, 27, 29, 41, 57</td>
</tr>
<tr>
<td>Flat warts</td>
<td>3, 10, 27, 28, 41, 49</td>
</tr>
<tr>
<td>Plantar warts</td>
<td>1, 2, 4</td>
</tr>
</tbody>
</table>

CANSA’s Position:
CANSA:
- is in favour of vaccinating all prepubescent girls against HPV
- commends and requests the South African Government, National Department of Health, and
 National Department of Basic Education to continue the HPV vaccination programme started in
 2014 whereby every girl in Grade 4 (9 years) to be vaccinated against HPV at no cost
- CANSA further recommends that the HPV vaccination programme be extended to also include
 prepubescent boys

Signs and Symptoms of Common Gynaecologic Problems
Early on, cervical cancer may not cause signs and symptoms. Advanced cervical cancer may cause
bleeding or discharge from the vagina that is not normal, such as bleeding after sex. If any of these
signs are present, a medical doctor should be consulted. The cause may be something other than
cancer, but the only way to know is to consult a medical doctor.
Gynaecologic Cancer Symptoms

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cervical Cancer</th>
<th>Ovarian Cancer</th>
<th>Uterine Cancer</th>
<th>Vaginal Cancer</th>
<th>Vulva Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal bleeding or discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvic pain or pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal or back pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Having to pass urine often</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itching or burning of the vulva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes in vulva colour or skin such as a rash, sores or warts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Centers for Disease Control and Prevention)

Risk Factors for Cervical Cancer

Even though HPV infection is the major cause of cervical cancer, several risk factors are linked to the development of cervical cancer. Risk factors for cervical cancer include:

- Having sex at an early age
- Having many sexual partners
- Having first sexual intercourse at a young age
- Smoking tobacco products
- Using oral contraceptives
- Having a weakened immune system
- Poor economic status (may not be able to afford regular Pap smears or have limited access to screening services)
- Sexual partners who have multiple partners or who participate in high-risk sexual activity
- Parity – HPV is less common among women with decreased parity
- Women who smoke are more susceptible to cervical cancer than women who do not smoke
- Failure to always use barrier methods during sexual intercourse, and
- Ineffective management and treatment of sexually transmitted infections (STI’s)
- Women whose mothers took the drug DES (diethylstilbestrol) during pregnancy in the early 1960’s to prevent miscarriage

CANSA supports:

- all efforts to assist women to quit smoking or preferably never to start smoking
- Promotion of the use of barrier methods during intercourse to prevent the spread of HPV and other sexually transmitted infections (STI’s) including HIV
- The promotion of the postponement of sexual activity to older age
- The effective management and treatment of sexually transmitted infections (STI’s) and
• decreasing parity.

Types of Cervical Cancer
There are two main types of cervical cancer: squamous cell carcinoma and adenocarcinoma. Each one is distinguished by the appearance of cells under a microscope.

• Squamous cell carcinomas begin in the thin, flat cells that line the bottom of the cervix. This type of cervical cancer accounts for 80 to 90 percent of cervical cancers.
• Adenocarcinomas develop in the glandular cells that line the upper portion of the cervix. These cancers make up 10 to 20 percent of cervical cancers.

Sometimes, both types of cells are involved in cervical cancer. Other types of cancer can develop in the cervix, but these are rare.
• Metastatic cervical cancer is cancer that has spread to other parts of the body.

Referral Criteria
For any primary health care service to operate effectively a referral system needs to be in place.

The referral system must make provision for:
• Clients with a normal Pap smear to be informed of their next Pap smear date
• Any client with a microscopically suspicious lesion, whatever the cytological result, should be referred for colposcopy

CANSA’s Position:
CANSA supports the above referral criteria.

CANSA has an organised cervical screening programme that services many women in rural and previously disadvantaged areas in South Africa. This service is offered using mobile health clinics manned by professional nurses. They work in close collaboration with the National Department of Health (NDoH), National Health Laboratory Services (NHLS) and private laboratories on agreement.

Staging of Cervical Cancer
A very important factor in determining the prognosis (outcome) of cervical cancer is how early the cancer is detected to determine how far it has spread.

The various stages of cervical cancer also affect the chance of recovery or prognosis of the patient.

FIGO stages for cervical cancer
Doctors assign the stage of the cancer by evaluating the tumour and whether the cancer has spread to other parts of the body.

Staging is based on the results of a physical exam, imaging scans, and biopsies.
Stage I: The cancer has spread from the cervix lining into the deeper tissue but is still just found in the uterus. It has not spread to other parts of the body. This stage may be divided into smaller groups to describe the cancer in more detail (see below).

- Stage IA: The cancer is diagnosed only by viewing cervical tissue or cells under a microscope. Imaging tests or evaluation of tissue samples can also be used to determine tumor size.
 - Stage IA1: There is a cancerous area of less than 3 millimetres (mm) in depth.
 - Stage IA2: There is a cancerous area 3 mm to less than 5 mm in depth.
- Stage IB: In this stage, the tumour is larger but still only confined to the cervix. There is no distant spread.
 - Stage IB1: The tumour is 5 mm or more in depth and less than 2 centimetres (cm) wide. A centimetre is roughly equal to the width of a standard pen or pencil.
 - Stage IB2: The tumour is 2 cm or more in depth and less than 4 cm wide.
 - Stage IB3: The tumour is 4 cm or more in width.

Stage II: The cancer has spread beyond the uterus to nearby areas, such as the vagina or tissue near the cervix, but it is still inside the pelvic area. It has not spread to other parts of the body. This stage may be divided into smaller groups to describe the cancer in more detail (see below).

- Stage IIA: The tumour is limited to the upper two-thirds of the vagina. It has not spread to the tissue next to the cervix, which is called the parametrial area.
 - Stage IIA1: The tumour is less than 4 cm wide.
 - Stage IIA2: The tumour is 4 cm or more in width.
- Stage IIB: The tumour has spread to the parametrial area. The tumour does not reach the pelvic wall.

Stage III: The tumour involves the lower third of the vagina and/or: has spread to the pelvic wall; causes swelling of the kidney, called hydronephrosis; stops a kidney from functioning; and/or involves regional lymph nodes. Lymph nodes are small, bean-shaped organs that help fight infection. There is no distant spread.

- Stage IIIA: The tumour involves the lower third of the vagina, but it has not grown into the pelvic wall.
- Stage IIIB: The tumour has grown into the pelvic wall and/or affects a kidney.
- Stage IIIC: The tumour involves regional lymph nodes. This can be detected using imaging tests or pathology. Adding a lowercase "r" indicates imaging tests were used to confirm lymph node involvement. A lowercase "p" indicates pathology results were used to determine the stage.
 - Stage IIIC1: The cancer has spread to lymph nodes in the pelvis.
 - Stage IIIC2: The cancer has spread to para-aortic lymph nodes. These lymph nodes are found in the abdomen near the base of the spine and near the aorta, a major artery that runs from the heart to the abdomen.

Stage IVA: The cancer has spread to the bladder or rectum, but it has not spread to other parts of the body.

Stage IVB: The cancer has spread to other parts of the body.
Cervical Cancer Survival Rates
There are many different factors that affect the prognosis (outlook) of cervical cancer including the stage of the cancer, the age of the patient, and general health of the patient.

Signs and Symptoms of Cervical Cancer
Early signs and symptoms of cervical cancer

In women who receive regular Pap screening, the first finding of the disease is usually an abnormal Pap test result.

Early symptoms that may occur can include
• Abnormal vaginal bleeding between periods, after intercourse, or after menopause
• Any bleeding after menopause
• Continuous vaginal discharge, which may be pale, watery, pink, brown, bloody or foul-smelling
• Periods becoming heavier and lasting longer than usual

Signs and symptoms of progressed cervical cancer
Some of the common symptoms observed during the later stages of cervical cancer are:

• Vaginal bleeding after sexual intercourse
• Pelvic pain
• Pain during sexual intercourse
• Offensive vaginal discharge may occur (pink, pale, brown, blood streaked, and foul-smelling)
• Abnormal bleeding between menstrual periods
• Heavy bleeding during menstrual period
• Increased urinary frequency
• Bleeding after menopause
• Painful urination
• Pelvic pain that is not related to the normal menstrual cycle
• Low back pain
• Leg pain
• Single swollen leg
• Bone fractures
• Weight loss
• Urethritis or urinary infection can be a sign of cervical cancer

Diagnosis of Cervical Cancer
Wirtz, C., Mohamed, Y., Engel, D., Sidibe, A., Holloway, M., Bloem, P., Kumar, S., Brotherton, J., Reis, V. & Morgan, C. 2022.
“A WHO global strategy launched in November 2020 sets out an ambitious pathway towards the worldwide elimination of cervical cancer as a public health problem within the next 100 years. Achieving this goal will require investment in innovative approaches. This review aims to describe integrated approaches that combine human papillomavirus (HPV) vaccination and cervical cancer..."
screening in low- and middle-income countries (LMIC), and their efficacy in increasing uptake of services. A systematic review was conducted analyzing relevant papers from Embase, Medline, CINAHL and CAB Global Health databases, as well as grey literature. Narrative synthesis was performed on the included studies. Meta-analysis was not appropriate due to the heterogeneity and nature of included studies. From 5,278 titles screened, 11 uncontrolled intervention studies from four countries (from Africa and east Asia) were included, all from the past 12 years. Four distinct typologies of integration emerged that either increased awareness of HPV and/or cervical cancer screening, and/or coupled the delivery of HPV vaccination and cervical cancer screening programs. The synthesis of findings suggests that existing HPV vaccination programs can be a useful pathway for educating mothers and other female caregivers about cervical cancer screening; through in person conversations with care providers (preferred) or take-home communications products. Integrated service delivery through outreach and mobile clinics may overcome geographic and economic barriers to access for both HPV vaccination and cervical cancer screening, however these require significant program and system resources. One study promoted HPV vaccination as part of integrated service delivery, but there were no other examples found that examined use of cervical cancer screening platforms to promote or educate on HPV vaccination. This review has demonstrated gaps in published literature on attempts to integrate HPV vaccination and cervical cancer screening. The most promising practices to date seem to relate to integrated health communications for cervical cancer prevention. Future research should further explore the opportunities for integrated health communications to support the efforts towards the new global cervical cancer elimination agenda, and costs and feasibility of integrated service delivery for underserved populations.”

The following procedures may be used:

Pap smear – This is a procedure whereby cells from the surface of the cervix are collected. The cells are viewed under a microscope, after staining, to find out if the cells are abnormal. This procedure is also called a Pap test. It is short for Papanicolaou (1947) with reference to George Nicholas Papanicolaou (1883-1962), a Greek-born United States anatomist who developed the technique of staining and examining collected cells to test for cervical cancer.

Human Papillomavirus (HPV) Test – A laboratory test used to check DNA for certain types of HPV infection. Cells are collected from the cervix and checked to find out if an infection is caused by a type of HPV that is linked to cervical cancer. It is also called the HPV DNA Test.

The cobas® HPV Test - is the only clinically validated, FDA-approved assay that simultaneously provides pooled results on high-risk genotypes and individual results on the highest-risk genotypes, HPV 16 and HPV 18. This test is a qualitative *in vitro* test for the detection of Human Papillomavirus (HPV) in patient specimens. The test utilises amplification of target DNA by the Polymerase Chain Reaction (PCR) and nucleic acid hybridisation for the detection of 14 high-risk (HR) HPV types in a single analysis.

The test specifically identifies (types) HPV 16 and HPV 18 while concurrently detecting the rest of the high risk types (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68) at clinically relevant infection levels. Specimens are limited to cervical cells collected in cobas® PCR Cell Collection Media (Roche...
Molecular Systems, Inc.), PreservCyt® Solution (Cytyc Corp.) and SurePath® Preservative Fluid (not approved in the US) (BD Diagnostics-TriPath).

Colposcopy – A procedure in which a colposcope (a lighted, magnifying instrument) is used to check the vagina and cervix for abnormal areas.

Biopsy – A sample of tissue is cut from the cervix and viewed under a microscope by a pathologist to check for signs of cancer, often referred to as *cone biopsy*.

Endocervical curettage (ECC) - to examine the opening of the cervix

Pelvic Examination – An examination of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum.

Once a woman is diagnosed with cervical cancer, the medical practitioner may order more tests to determine how far the cancer has spread. This is part of staging and may include:

- Chest X-ray
- Computed Tomography (also called Computerised Axial Tomography or CT scan)
- Cystoscopy
- Intravenous Pyelogram (IVP)
- Magnetic Resonance Imaging (MRI)

Bethesda Classification of Cervical Cytology*

<table>
<thead>
<tr>
<th>Category</th>
<th>Specifics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen type</td>
<td>Conventional (Papanicolaou [Pap]), liquid-based preparation, or another</td>
<td>Type of test is noted.</td>
</tr>
<tr>
<td>Adequacy of the specimen</td>
<td>Satisfactory for evaluation</td>
<td>Any quality indicators (eg, presence or absence of endocervical or transformation zone component, partially obscuring blood, inflammation) are described.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reason is specified.</td>
</tr>
</tbody>
</table>

*Note: Bethesda Classification of Cervical Cytology is a standardized system used to describe and classify cervical cytology samples.
<table>
<thead>
<tr>
<th>Category</th>
<th>Specifics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation (rejected and not processed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsatisfactory for evaluation but processed and evaluated</td>
<td></td>
<td>Reason is specified.</td>
</tr>
<tr>
<td>Negative for intraepithelial lesion or cancer</td>
<td></td>
<td>Findings are stated or described under Interpretation, below.</td>
</tr>
<tr>
<td>Epithelial cell abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other findings</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpretation of negative (nonmalignant) abnormalities†

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Possible findings include the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Trichomonas vaginalis</td>
<td></td>
</tr>
<tr>
<td>• Fungi morphologically consistent with Candida species</td>
<td></td>
</tr>
<tr>
<td>• Shift in vaginal flora suggesting bacterial vaginosis</td>
<td></td>
</tr>
<tr>
<td>• Bacteria morphologically consistent with Actinomyces species</td>
<td></td>
</tr>
<tr>
<td>• Cellular changes consistent with herpes simplex virus</td>
<td></td>
</tr>
<tr>
<td>• Cellular changes consistent with cytomegalovirus</td>
<td></td>
</tr>
</tbody>
</table>

Nonneoplastic findings (reporting is optional)

<table>
<thead>
<tr>
<th>Possible findings include the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nonneoplastic cellular variations (squamous metaplasia, keratotic changes, tubal metaplasia, atrophy, or pregnancy-associated changes)</td>
</tr>
<tr>
<td>• Reactive cellular changes associated with inflammation (lymphocytic cervicitis), radiation, or IUD use</td>
</tr>
<tr>
<td>• Glandular cell status after hysterectomy</td>
</tr>
</tbody>
</table>

Interpretation of epithelial cell abnormalities

<table>
<thead>
<tr>
<th>Squamous cell</th>
<th>Possible findings include the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Atypical squamous cells of undetermined significance (ASC-US)</td>
<td></td>
</tr>
<tr>
<td>• Atypical squamous cells for which a high-grade lesion cannot be excluded</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Specifics</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>(ASC-H)</td>
<td>• Low-grade squamous intraepithelial lesion encompassing HPV† infection or mild dysplasia (CIN 1)</td>
</tr>
<tr>
<td></td>
<td>• High-grade squamous intraepithelial lesion encompassing moderate (CIN 2) and severe dysplasia (CIN 3/CIS), noting whether the lesion has features suggesting invasion</td>
</tr>
<tr>
<td></td>
<td>• Squamous cell carcinoma</td>
</tr>
<tr>
<td>Glandular cell</td>
<td>Possible findings include the following:</td>
</tr>
<tr>
<td></td>
<td>• Atypical cells: Endocervical, endometrial, or glandular</td>
</tr>
<tr>
<td></td>
<td>• Atypical cells likely to be cancerous: Endocervical or glandular</td>
</tr>
<tr>
<td></td>
<td>• Adenocarcinoma in situ: Endocervical</td>
</tr>
<tr>
<td></td>
<td>• Adenocarcinoma: Endocervical, endometrial, extrauterine, or NOS</td>
</tr>
<tr>
<td>Interpretation of other abnormalities</td>
<td>Endometrial cells (in a woman ≥ 45)*</td>
</tr>
<tr>
<td>Other cancers</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Whether sample is negative for squamous intraepithelial lesion is specified.</td>
</tr>
<tr>
<td></td>
<td>Type is specified.</td>
</tr>
</tbody>
</table>

* Use of an automated device for scanning should be reported, as should adjunctive tests (eg, HPV) and their results.

† If there is no cellular evidence of neoplasia, clinicians should state negative for intraepithelial lesion or malignancy here or in the general categorization.

‡ Cellular changes of HPV infection—previously called koilocytosis, koilocytic atypia, and condylomatous atypia—are included in the category of low-grade squamous intraepithelial lesion.

CIN = cervical intraepithelial neoplasia; CIS = carcinoma in situ; HPV = human papillomavirus; IUD = intrauterine device; NOS = not otherwise specified.

Adapted from the Bethesda System 2014, National Institutes of Health.
CANSA’s Position Regarding Pap Smears

CANSA believes that it is ideal to have a Pap smear done 10-20 days after the start of the last period. It is not recommended to plan one’s Pap smear during a period. Menstrual fluid and blood may make it difficult for the pathologist to interpret results. However, if the flow is light, some doctors will perform a Pap smear. Newer, liquid based Pap smears can separate cervical cells from mucus and blood, allowing a more accurate reading.

If a woman has started her period unexpectedly or finds that she has scheduled a Pap smear during a time when she may have her period, she should call her doctor’s office. Ask to speak to a nurse or the doctor and inform them that the Pap smear will coincide with her period. It is best to reschedule an appointment.

The World Health Organization (WHO) and Cervical Cancer Screening:

<table>
<thead>
<tr>
<th>Summary recommendation for</th>
<th>Summary recommendation for</th>
</tr>
</thead>
<tbody>
<tr>
<td>the general population of women</td>
<td>women living with HIV</td>
</tr>
</tbody>
</table>

World Health Organization (WHO) - World Health Organization (WHO) - 2021 - suggests using either of the 2021 - suggests using the following strategies for cervical cancer strategy for cervical cancer prevention prevention:

- HPV DNA detection in a screen-and-treat approach starting at the age of 30 years with regular screening every 5 to 10 years.
- HPV DNA detection in a screen, triage and treat approach starting at the age of 30 years with regular screening every 5 to 10 years.

- HPV DNA detection in a screen, triage and treat approach starting at the age of 25 with regular screening every 3 to 5 years.

CANSA’s Position:

CANSA Supports the *Cervical Cancer Prevention and Control Policy* of the World Health Organization (2021) including that of the National Department of Health regarding Cervical Screening Intervals for cervical smears in the Public Health Sector:

Women in the Low Risk Target Group

- Women in the low risk target group will be offered screening three (3) times in their lifetime, assuming no abnormalities were found during screening.
- Screening will be offered first at age 30 and then at 10-year intervals (i.e. at ages 40 and 50).
- If a woman is first screened at an age older than 30, her last screen may be after age 50.
• All low risk women who are found to have an abnormality during routine screening should subsequently be screened at 3-year intervals until the screen result is negative.
• When the result is negative, the woman will return to the 10-year schedule.
• Pregnancy will not preclude screening for cervical cancer as screening can be safely performed up to 20 weeks of gestation to avoid missed opportunity.

Women who Fall into the High Risk Population or who are HIV+.
• Women who are recipients of organ transplants are considered to be at high risk.
• All women with immunosuppressive disease are also considered to be at high risk.
• All women on chronic immune suppressing treatment are also considered to be at high risk.
• Screening for HIV+ women will be done irrespective of CD4 count and antiretroviral (ARV) treatment and will be screened annually as per below.
• All HIV+ women are considered to be at high risk for cervical cancer whether they are receiving antiretroviral (ARV) treatment or not.
• All HIV+ women will be screened immediately for cervical cancer at diagnosis.
• All HIV+ women will be subsequently screened annually if the screening test is positive.
• All HIV+ women will be subsequently screened every 3 years if the screening test is negative.
• Because of the high incidence of HIV among younger women and girls, screening services will be provided routinely to younger women (i.e. younger than 30 years) from the time that HIV diagnosis is confirmed provided that the young women have previously had sex (i.e. putting them at risk of acquiring HPV).

CANSA further suggests that women avoid having anything in the vagina 24-48 hours prior to a Pap smear.

This includes:

• sexual intercourse
• spermicides, foams, or jellies
• douching
• vaginal inserts
• tampons

All of the above can make it difficult for the pathologist to accurately interpret results.

CANSA further believes that:
• every eligible woman should preferably have a Pap smear at least every 3 years
• it is better to have a Pap smear at a less-than-optimal time than not at all
• routine cervical screening is not required for women under 18 years of age, even if they are sexually active as there is no evidence to support encouraging women under 18 years of age to have a Pap smear
• all women who have ever been sexually active should start having Pap smears between the ages of 18 and 20 years, or two years after first having sexual intercourse, whichever is later
• a decision to screen a woman below the age of 18 years is at the discretion of the clinician and would depend on the individual circumstances of the patient
- Pap smears may cease at the age of 70 years for women who have had two normal Pap smears within the last five years
- Women over 70 years who have never had a Pap smear, or those who request a Pap smear, should be screened

Treatment of Cervical Cancer
Treatment of cervical cancer depends on:
- The stage of the cancer
- The size and shape of the tumour
- The woman’s age and general health
- The woman’s desire to have children in the future

Treatment of early-stage cervical cancer may include:
- Cervical Conisation – it involves removing a cone-shaped piece of tissue from the cervix and cervical canal. The overall size of the tissue removed will vary depending on the severity of the cancer
- Loop Electrosurgical Excision Procedure (LEEP) – use is made of a thin, low-voltage electrified wire loop to cut out abnormal tissue
- Cryosurgery – used for cervical dysplasia or abnormal cells on the cervix. If left untreated, these abnormal cells may develop into cervical cancer. Cryosurgery kills pre-cancerous and cancerous cells by freezing them
- Total hysterectomy (removal of the uterus)
- Internal Radiation Therapy (Brachytherapy)

Treatment for more advanced cervical cancer may include:
- Radical hysterectomy – where the uterus and much of the surrounding tissues, including lymph nodes and the upper part of the vagina is removed surgically
- Pelvic exenteration – an extreme type of surgery in which all of the organs of the pelvis, including the bladder and rectum, are removed surgically

Purpose of review: This article discusses recent developments towards less radical surgical treatment for early-stage cervical cancer.
Recent findings: Surgery is the standard treatment for early-stage cervical cancer. In the last decades, new treatment strategies have been developed aiming to reduce morbidity, without hampering oncological safety. We provide an update of the latest knowledge on safety and morbidity following less radical surgical procedures in early-stage cervical cancer. In cervical cancer with a tumour size of 2 cm or less, radical surgery (simple hysterectomy or fertility-sparing conisation) may be a well tolerated option. For patients with larger lesions (>2 cm) and wishing to preserve fertility, administration of neoadjuvant chemotherapy followed by less extensive surgery appears to be a feasible and well tolerated alternative to abdominal trachelectomy. With regard to lymph node assessment, increasing evidence shows the feasibility of the sentinel lymph node procedure instead of full pelvic lymphadenectomy. Prospective trials reporting on oncological safety are awaited. It is important to exercise caution when new surgical strategies are introduced.
promising retrospective data, prospective randomized studies may present unexpected results, for instance, minimally invasive radical hysterectomy showed inferior results compared to laparotomy. **Summary:** There is a shift towards less radical treatment for early-stage cervical cancer. This review explores whether and when less is really more.

Radiation Therapy may be used to treat cancer that has spread beyond the pelvis, or cancer that has returned:

- Internal radiation therapy
- External radiation therapy

“External beam radiotherapy and brachytherapy are major treatments in the management of cervical cancer. For early-stage tumours with local risk factors, brachytherapy is a preoperative option. Postoperative radiotherapy is indicated according to histopathological criteria. For advanced local tumours, chemoradiation is the standard treatment, followed by brachytherapy boost, which is not optional. We present the update of the recommendations of the French Society of Oncological Radiotherapy on the indications and techniques for external beam radiotherapy and brachytherapy for cervical cancer.”

“Image-guided brachytherapy in cervical cancer has been developed to be a feasible and very efficient component of the treatment of locally advanced cervical cancer in addition to concurrent chemoradiation treatment. This technique allows effective dose coverage of the target while sparing the organs at risk through adjustment of the implants (intracavitary and interstitial needles) and multi-parametric three-dimensional treatment planning. Emerging evidence from prospective studies shows a high rate of local control throughout all stages, superior to two-dimensional brachytherapy, with limited toxicity for each organ site. This is associated with a high rate of pelvic control and overall survival. Based on clinical evidence, there is a dose-effect relationship for both disease and morbidity endpoints from which clear dose constraints for the target and organs at risk were derived. This review gives an overview of the major milestones that occurred in the development of image-guided adaptive brachytherapy in the last two decades, including outcome data and a summary of the hard and soft dose constraints recommended for targets and organs at risk.”

Chemotherapy

The treatment of cancer by means of cytotoxic and other drugs.

Immunotherapy

Treatment or prevention of cancer that involves the stimulation, enhancement, suppression, or desensitisation of the immune system.

“Recurrent and metastatic cervical cancer is generally treated by cisplatin, paclitaxel, and bevacizumab with limited benefit this constituting an unmet need. Immune checkpoint inhibitors, namely the inhibitors of programmed death 1 and programmed death ligand 1 have been proved to
be efficacious in the treatment of patients with advanced cervical cancer. Recently, a PD-1 inhibitor, pembrolizumab was approved for such cancer. However, there is much scope of improvement of current outcome. Dual blockade of cytotoxic T lymphocyte-associated protein 4 and PD-1 is an attractive therapeutic approach. It is used in other cancers and is currently proposed for cancer cervix also. Search is on for single or combined regimen showing efficacy in multiple pathological conditions of cancer cervix irrespective presence of PD-L1 in malignant tissue. An effort to meet such unmet need has culminated in inventing new immune checkpoint inhibitors namely PD-1 inhibitor, AGEN2034 (Balstilimab) and CTLA-4 inhibitor, AGEN1884 (Zalifrelimab). They have shown meaningful and durable activity as single-agent therapy in previously treated patients with persistent R/M CC in a large phase II trial (NCT03104699) in PD-L1 + and PD-L1- tumour. Responses were found both in squamous cell carcinoma & adenocarcinoma cell types. Balstilimab plus zalifrelimab combination (NCT03495882) produced improved clinical benefit over monotherapy as evidenced by higher relative response rates and longer response duration, as well as a manageable safety profile. Interesting development of this combination and other immunotherapies in R/M CC are discussed in this ensuing review.”

Therapeutic Vaccines

Utilising a patient’s own immune system to fight an existing disease rather than immunising for protection against future disease.

Adoptive Cell Therapy

T cells are collected from a patient and grown in the laboratory. This increases the number of T cells that are able to kill cancer cells or fight infections. These T cells are given back to the patient to help the immune system fight disease. Also called cellular adoptive immunotherapy.

Monoclonal Antibodies

An antibody produced by a single clone of cells. Monoclonal antibodies can be made in large quantities in the laboratory and are a cornerstone of immunology. Monoclonal antibodies are increasingly coming into use as therapeutic agents.

Follow-up Treatment

Follow-up checks will continue for some years after treatment. At first follow-up checks may be conducted every few months, becoming gradually less and less frequent.

Follow-up checks may include:

- Having a physical examination by the medical practitioner
- Pap smear
- Colposcopy
- Blood tests for tumour markers
- X-rays
- CT Scan or MRI scan
Lowering the Risk for Cervical Cancer

Cancer prevention is action taken to lower the risk for getting cancer. The risk for cervical cancer can be lowered by:

- **Having regular Pap smear tests** – Current guidelines recommend that women should have a Pap test every 3 years beginning at age 21. These guidelines further recommend that women aged 30 to 65 should have HPV and Pap co-testing every 5 years or a Pap test alone every 3 years. Women with certain risk factors may need to have more frequent screening or to continue screening beyond age 65
- **Having a Human Papilloma Virus (HPV) test** - In women older than age 30, the Pap smear may be combined with a test for human papillomavirus (HPV) — a common sexually transmitted infection that can cause cervical cancer in some women
- **Getting an HPV vaccine** before becoming sexually active
- **Not using tobacco products**
- **If smoking, to quit smoking**
- **Not having unprotected sexual intercourse**
- **Limiting the number of sexual partners**
- **Not becoming sexually active at a young age**

Individuals Often Ask Whether a “Booster” HPV Vaccine is Required

The answer is “yes” depending on the following. In a 2-dose schedule of HPV vaccine, the recommended interval is 6–12 months, and the minimum interval is 5 months between the first and second dose. If the second dose is given earlier than 5 months, a third dose should be given.

HPV Vaccine Schedule and Dosing

If an HPV vaccine is given to individuals between the ages of 9 and 14 years of age, a 2-dose schedule is advised.

If and HPV vaccine is given to individuals between the ages of 15 and 26 years of age, a 3-dose schedule is advised.

Immunogenicity studies have shown that 2 doses of HPV vaccine given to 9–14 year-old individuals at least 6 months apart provided as good or better protection than 3 doses given to older adolescents or young adults.

Current studies have followed HPV vaccinated individuals for ten years, and the results show that there is no evidence of weakened protection over time.

According to the US Centers for Disease Control and Prevention (CDC) HP Vaccine Recommendations are:
• HPV vaccine is recommended for routine vaccination at age 11 or 12 years. (Vaccination can be started at age 9.)
• ACIP also recommends vaccination for everyone through age 26 years if not adequately vaccinated previously. HPV vaccination is given as a series of either two or three doses, depending on age at initial vaccination.
• Vaccination is not recommended for everyone older than age 26 years. However, some adults ages 27 through 45 years may decide to get the HPV vaccine based on discussion with their clinician, if they did not get adequately vaccinated when they were younger. HPV vaccination of people in this age range provides less benefit, for several reasons, including that more people in this age range have already been exposed to HPV.
• For adults ages 27 through 45 years, clinicians can consider discussing HPV vaccination with people who are most likely to benefit. HPV vaccination does not need to be discussed with most adults over age 26 years.

Keep in mind that HPV vaccination prevents new HPV infections but does not treat existing HPV infections or diseases. HPV vaccine works best when given before any exposure to HPV.

Most sexually active adults have already been exposed to HPV, although not necessarily all of the HPV types targeted by vaccination. At any age, having a new sex partner is a risk factor for getting a new HPV infection. People who are in a long-term, mutually monogamous relationship are not likely to get a new HPV infection.

Cervical Cancer and HIV
There are approximately 5.7 million HIV+ people in South Africa of which 60% are women. They are at higher risk of HPV infection and persistence. Research shows that they are infected with a broader range of HPV strains. Research has also found that those who are treated with Highly Active Antiretroviral Therapy (HAART), have a longer lifespan and are at a significantly higher risk to develop cancer of the cervix.

CANSA’s Position:
CANSA supports a non-discriminating approach and calls for the equal treatment of all individuals.

CANSA further supports:
• The education of health personnel concerning the importance of cervical screening;
• The training of health personnel in the correct taking of Pap smears;
• The training of professional nurses in cytology so that they can be used for the staining and screening of Pap smears;
• Ensuring that good records are kept concerning the quality and outcome of Pap smears, including a client recall system;
• Effective follow-up and referral of clients;
• Educating the community about the importance of vaccination of all girls against HPV.
About Clinical Trials
Clinical trials are research studies that involve people. They are conducted under controlled conditions. Only about 10% of all drugs started in human clinical trials become an approved drug.

Clinical trials include:
- Trials to test effectiveness of new treatments
- Trials to test new ways of using current treatments
- Tests new interventions that may lower the risk of developing certain types of cancers
- Tests to find new ways of screening for cancer

The South African National Clinical Trials Register provides the public with updated information on clinical trials on human participants being conducted in South Africa. The Register provides information on the purpose of the clinical trial; who can participate, where the trial is located, and contact details.

For additional information, please visit: https://pactr.samrc.ac.za/

Medical Disclaimer
This Fact Sheet is intended to provide general information only and, as such, should not be considered as a substitute for advice, medically or otherwise, covering any specific situation. Users should seek appropriate advice before taking or refraining from taking any action in reliance on any information contained in this Fact Sheet. So far as permissible by law, the Cancer Association of South Africa (CANS) does not accept any liability to any person (or his/her dependants/estate/heirs) relating to the use of any information contained in this Fact Sheet.

Whilst the Cancer Association of South Africa (CANS) has taken every precaution in compiling this Fact Sheet, neither it, nor any contributor(s) to this Fact Sheet can be held responsible for any action (or the lack thereof) taken by any person or organisation wherever they shall be based, as a result, direct or otherwise, of information contained in, or accessed through, this Fact Sheet.

Sources and References Consulted or Utilised

http://cancer.about.com/od/cervicalcancer/a/cervcancrsympt.htm

American Cancer Society. What is Cancer?

Bethesda System
https://screening.iarc.fr/atlasclassifbethesda.php
https://www.msdmanuals.com/professional/multimedia/table/v55502729

Researched and Prepared by Prof Michael C Herbst
[D Litt et Phil (Health Studies); D N Ed; M Art et Scien; B A Cur; Dip Occupational Health; Dip Genetic Counselling; Dip Audiometry and Noise Measurement; Diagnostic Radiographer; Medical Ethicist]
Approved by Ms Elize Joubert, Chief Executive Officer [BA Social Work (cum laude); MA Social Work]
August 2022

Cancer.Net
http://www.cancer.net/cancer-types/cervical-cancer/staging

http://cancer.about.com/od/cervicalcancertreatment1/a/cryosurgery.htm

Cancer Research Institute

Cancer Treatment Centers of America. Cervical Cancer Treatments.
http://www.cancercenter.com/cervical-cancer/types/

CancerHelp UK. Cervical Cancer.
http://cancerhelp.cancerresearchuk.org/type/cervical-cancer/treatment/cervical-cancer-follow-up

Centers for Disease Control and Prevention. Cervical Cancer.
http://www.cdc.gov/cancer/cervical/basic_info/symptoms.htm
http://www.cdc.gov/cancer/cervical/basic_info/prevention.htm
http://www.cdc.gov/cancer/cervical/basic_info/screening.htm

http://www.cervicalcancer.org/signsandsymptoms.html
http://www.cervicalcancer.org/stagesandstaging.html
http://www.cervicalcancer.org/survival.html
http://www.cervicalcancer.org/prognosis.html

FDA
http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm394773.htm

Female Reproductive System

FIGO Staging of Cervical Cancer

Mayo Clinic. Cervical Cancer Symptoms.

Tumour Grade and Tumour Stage

Researched and Prepared by Prof Michael C Herbst
[D Litt et Phil (Health Studies); D N Ed; M Art et Scien; B A Cur; Dip Occupational Health; Dip Genetic Counselling; Dip Audiometry and Noise Measurement; Diagnostic Radiographer; Medical Ethicist]
Approved by Ms Elize Joubert, Chief Executive Officer [BA Social Work (cum laude); MA Social Work]
August 2022
US Centers for Disease Control and Prevention
https://www.cdc.gov/hpv/hcp/schedules-recommendations.html#text=Yes,,third%20dose%20should%20be%20given.
https://www.cdc.gov/std/hpv/stdfact-hpv-vaccine-young-women.htm

World Health Organization