Introduction

Brain tumours comprise approximately 20% of all childhood malignancies, in frequency it follows second only to acute lymphoblastic leukaemia.

Astrocytomas comprise a wide range of tumours that differ in their location within the central nervous system (CNS), their growth potential, extent of invasiveness, features, ability tendency progression, and clinical course.

Most astrocytomas are slow to develop or heal. They are said to be low-grade tumours that predominantly arise in midline locations, such as the cerebellum and diencephalic region, including the visual pathway and hypothalamus.

Spinal cord astrocytomas are less common and may be either high-grade or low-grade.

Most cases occur in the first decade of life, with the peak age at 5-9 years. Surgical removal is often sufficient to cure most low-grade astrocytomas; however, the prognosis remains poor for high-grade astrocytomas in spite of the addition of radiotherapy and chemotherapy.

BACKGROUND: Bilateral thalamic astrocytomas in children are exceedingly rare. These highly malignant tumors seldom respond to conventional treatment strategies and carry a grim prognosis for patients. However, recent advances in molecular oncology have had a positive impact on prognostication and treatment strategies of these tumors.

CASE-BASED REVIEW: We present a new case of WHO grade III bilateral thalamic astrocytoma in a child and review the pathophysiology, molecular oncogenesis, and relevant treatment strategies for this rare disease.

CONCLUSIONS: High-grade thalamic astrocytomas affecting both thalami pose a challenge to pediatric neurosurgeons, neuro-oncologists, and neuropathologists given the lack of effective...
treatment strategies. Understanding recent revelations in the field of molecular oncology can assist clinicians in adequately formulating a treatment plan in this patient population.

Incidence of Childhood Astrocytoma in South Africa
The National Cancer Registry (2014) does not provide any information regarding the incidence of Astrocytoma. It only provides combined information for Brain and Central Nervous System Tumours.

Signs and Symptoms of Childhood Astrocytoma
Children with astrocytoma may experience the following symptoms or signs. Sometimes, children with astrocytoma do not show any of these symptoms. Or, these symptoms may be caused by a medical condition other than a tumour:

- Morning headache of headache that goes away after vomiting
- Nausea and vomiting
- Hearing problems
- Speech problems
- Slow speech/Worsening handwriting in children who already can write
- Weakness or change in feeling on one side of the body
- Loss of balance and trouble walking
- Unusual sleepiness or change in energy level
- Change in personality or behaviour
- Feeling tired and listless
- Seizures not related to a high fever
- Weight loss or weight gain for no known reason
- Eyesight problems, such as double vision
- Changed growth or development
- Increase in the size of the head in infants

Some tumours do not cause symptoms. Other conditions may cause the same symptoms as those caused by childhood astrocytomas. If any of the symptoms persist, the child should be referred to a doctor without delay. Symptoms may be different depending on the following:

- Where the tumour forms in the brain or spinal cord
- The size of the tumour
- How fast the tumour grows
- The child’s age and development

In a baby, the only symptom may be that the head is growing too fast. An infant’s skull can expand to make room for a growing tumour in the brain, so a baby with astrocytoma may have a larger than normal head.

If concerned about one or more of the symptoms or signs, please consult a doctor.
Diagnosis of Childhood Astrocytoma

Doctors use various tests to diagnose a tumour. They also need to determine whether it has spread to another part of the body, called metastasis. Imaging tests are usually used to find out whether the tumour has spread. The tests also assist in deciding on the most appropriate treatment.

For most types of tumours, a biopsy is the only way to make a definitive diagnosis.

The child’s doctor may consider the following factors when choosing a diagnostic test:

- Age of the child
- General medical condition
- Type of tumour suspected
- Signs and symptoms
- Results of previous tests

In addition to a physical examination, the following tests may be used to diagnose astrocytoma:

- Computed tomography (CT or CAT) scan
- Magnetic resonance imaging (MRI)
- Biopsy. A doctor called a neurosurgeon will remove a small piece of tissue from the tumour.

Treatment Options for Childhood Astrocytomas

Children with astrocytomas should have their treatment planned by a team of health care providers who are experts in treating childhood brain tumours.

Childhood Low-Grade Astrocytomas - when the tumour is first diagnosed, first-line treatment may be surgery. An MRI scan is done after the surgery to see if there is any remaining tumour.

If the tumour was completely removed by surgery, more treatment may not be needed and the child is closely watched to see if symptoms appear or change. This is also called watchful waiting.

If some tumour remained after surgery, treatment may include the following:

- Watchful waiting
- More surgery to remove the tumour
- Cerebrospinal fluid diversion
- Radiation therapy
- Biologic therapy
- Targeted therapy
- A clinical trial of a new treatment

Recurrent Childhood Low-Grade Astrocytomas - before more cancer treatment is given, imaging tests, biopsy, or surgery are done to be sure cancer is present and find out how much cancer there is.

Treatment of recurrent childhood low-grade astrocytoma may include the following:
• More surgery to remove the tumour
• Radiation therapy to the tumour
• Surgery, chemotherapy, and/or radiation therapy
• A clinical trial

Childhood High-Grade Astrocytomas - treatment may include the following:

• Surgery, chemotherapy, and radiation therapy
• A clinical trial

Recurrent Childhood High-grade Astrocytomas – treatment of childhood high-grade Astrocytoma may include the following:

• Surgery
• High-dose chemotherapy with possible stem cell transplant
• A clinical trial

Cerebrospinal fluid diversion – cerebrospinal fluid diversion is a method used to drain fluid that has built up around the brain and spinal cord. A shunt (long, thin tube) is placed in a ventricle (fluid-filled space) of the brain and threaded under the skin to another part of the body, usually the abdomen. The shunt carries excess fluid away from the brain so it may be absorbed elsewhere in the body.

Cerebrospinal fluid (CSF) is the fluid that flows in and around the hollow spaces of the brain and spinal cord, and between two of the meninges (the thin layers of tissue that cover and protect the brain and spinal cord).

Childhood Astrocytomas Treatment (PDQ®). 2019. Patient Version. PDQ Pediatric Treatment Editorial Board. Published online: August 20, 2019.

Newly Diagnosed Childhood Low-Grade Astrocytomas

When the tumour is first diagnosed, treatment for childhood low-grade astrocytoma depends on where the tumour is, and is usually surgery. An MRI is done after surgery to see if there is tumour remaining.

If the tumour was completely removed by surgery, more treatment may not be needed and the child is closely watched to see if signs or symptoms appear or change. This is called observation.

If there is tumour remaining after surgery, treatment may include the following:

• Observation.
• A second surgery to remove the tumour.
• Radiation therapy, which may include conformal radiation therapy, intensity-modulated radiation therapy, proton beam radiation therapy, or stereotactic radiation therapy, when the tumour begins to grow again.
• Combination chemotherapy with or without radiation therapy.
• A clinical trial of targeted therapy with a combination of BRAF inhibitors in patients with mutations in the BRAF gene.

In some cases, observation is used for children who have a visual pathway glioma. In other cases, treatment may include surgery to remove the tumour, radiation therapy, or chemotherapy. A goal of treatment is to save as much vision as possible. The effect of tumour growth on the child’s vision will be closely followed during treatment.

Children with neurofibromatosis type 1 (NF1) may not need treatment unless the tumour grows or signs or symptoms, such as vision problems, appear. When the tumour grows or signs or symptoms appear, treatment may include surgery to remove the tumour, radiation therapy, and/or chemotherapy.

Treatment of childhood high-grade astrocytoma may include the following:
• Surgery to remove the tumor, followed by chemotherapy and/or radiation therapy.
• A clinical trial of a new treatment.
• A clinical trial of targeted therapy with a PARP inhibitor combined with radiation therapy and chemotherapy to treat newly diagnosed malignant glioma that does not have mutations (changes) in the BRAF gene.

PURPOSE: The present study aims to determine the tumor-related, clinical, and demographic factors associated with extent of resection (EOR) and post-operative outcomes in JPA patients.

METHODS: All patients with JPA, identified from a single-center brain tumour data base, were included in this retrospective analysis. Pre-operative MRI scans were reviewed by a single neurosurgeon blinded to the EOR. JPA cases that exhibited no residual tumor post-operatively were assigned to the GTR group, all other tumors were assigned to the <GTR group. Tumor-related, clinical and demographic variables as well as perioperative morbidities were compared between both groups.

RESULTS: Of the 28 patients included, 15 had a GTR (46% male; median age: 7.5 years; range: 1.16-14.9) and 13 had <GTR (69.2% male; median age: 10.6 years; range: 0.66-17.68). Tumor location reached statistical significance, as there were significantly more cerebellar tumors in the GTR group (86.7%) compared to the <GTR group (38.5%) (p = 0.016). GTR cases had a significantly longer average follow-up interval (6.6 months) than <GTR cases (4.5 months) (p = 0.031). All demographic variables, clinical variables and tumor-related factors showed no significant differences between the two groups. There were no differences between GTR and <GTR cases in terms of perioperative outcomes.

CONCLUSIONS: This study shows other than location of the lesion in the cerebellum, demographic, clinical and tumor-related variables are not associated with EOR in children with JPA. GTR was associated with an extended follow-up interval but not with increased perioperative morbidities compared to those with <GTR.
About Clinical Trials

Clinical trials are research studies that involve people. They are conducted under controlled conditions. Only about 10% of all drugs started in human clinical trials become an approved drug.

Clinical trials include:

- Trials to test effectiveness of new treatments
- Trials to test new ways of using current treatments
- Tests new interventions that may lower the risk of developing certain types of cancers
- Tests to find new ways of screening for cancer

The South African National Clinical Trials Register provides the public with updated information on clinical trials on human participants being conducted in South Africa. The Register provides information on the purpose of the clinical trial; who can participate, where the trial is located, and contact details.

For additional information, please visit: www.sanctr.gov.za/

Medical Disclaimer

This Fact Sheet is intended to provide general information only and, as such, should not be considered as a substitute for advice, medically or otherwise, covering any specific situation. Users should seek appropriate advice before taking or refraining from taking any action in reliance on any information contained in this Fact Sheet. So far as permissible by law, the Cancer Association of South Africa (Cansa) does not accept any liability to any person (or his/her dependants/estate/heirs) relating to the use of any information contained in this Fact Sheet.

Whilst Cansa has taken every precaution in compiling this Fact Sheet, neither it, nor any contributor(s) to this Fact Sheet can be held responsible for any action (or the lack thereof) taken by any person or organisation wherever they shall be based, as a result, direct or otherwise, of information contained in, or accessed through, this Fact Sheet.

Sources and References Consulted or Utilised

American Brain Tumor Association

Cancer Expert

Cancer.net
Cerebrospinal Fluid Diversion

https://www.google.co.za/search?q=cerebrospinal+fluid+diversion+procedures&source=lnms&tbm=isch&sa=X&ei=rxS2U43la2M7Aac1oDgBA&ved=0CAQQUAoATgK&biw=714&bih=714&dpr=0.9#facrce__&imgdii__&imgrefurl=https://www.cancer.gov/cancertopics/pdq/treatment/child-astrocytomas/HealthProfessional/page1/AllPages#2

Medscape
http://emedicine.medscape.com/article/985927-overview

National Cancer Institute
http://www.cancer.gov/cancertopics/pdq/treatment/child-astrocytomas/patient/page1
http://www.cancer.gov/cancertopics/pdq/treatment/child-astrocytomas/HealthProfessional/page1/AllPages#2
http://www.cancer.gov/cancertopics/pdq/treatment/child-astrocytomas/patient/page1/AllPages/Print#5
http://www.cancer.gov/about-cancer/treatment/clinical-trials/what-are-trials

Paediatric Astrocytoma
https://emedicine.medscape.com/article/985927-workup

http://www.cancer.net/cancer-types/astrocytoma-childhood/diagnosis